Approximation of Probabilistic Maximal Frequent Itemset Mining Over Uncertain Sensed Data
Event detection by discovering frequent itemsets is very popular in sensor network communities. However, the recorded data is often a probability rather than a determined value in a really productive environment as sensed data is often affected by noise. In this paper, we study to detect events by f...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9099516/ |