Superhydrophobic Copper‐Composite Surfaces Exert Antibacterial Effects against Gram‐Negative and ‐Positive Bacteria
Abstract Copper shows a high promise in developing biomedical materials with antibacterial effect. The antibacterial effect can be enhanced by nanostructured surfaces with superhydrophobic properties, which reduce the solid contact area available for bacterial adhesion and adherent growth. Here, thr...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley-VCH
2023-06-01
|
Series: | Advanced Materials Interfaces |
Subjects: | |
Online Access: | https://doi.org/10.1002/admi.202300121 |