Summary: | BACKGROUND: In the process of protein evolution, sequence variations within protein families can cause changes in protein structures and functions. However, structures tend to be more conserved than sequences and functions. This leads to an intriguing question: what is the evolutionary mechanism by which sequence variations produce structural changes? To investigate this question, we focused on the most common types of sequence variations: amino acid substitutions and insertions/deletions (indels). Here their combined effects on protein structure evolution within protein families are studied. RESULTS: Sequence-structure correlation analysis on 75 homologous structure families (from SCOP) that contain 20 or more non-redundant structures shows that in most of these families there is, statistically, a bilinear correlation between the amount of substitutions and indels versus the degree of structure variations. Bilinear regression of percent sequence non-identity (PNI) and standardized number of gaps (SNG) versus RMSD was performed. The coefficients from the regression analysis could be used to estimate the structure changes caused by each unit of substitution (structural substitution sensitivity, SSS) and by each unit of indel (structural indel sensitivity, SIDS). An analysis on 52 families with high bilinear fitting multiple correlation coefficients and statistically significant regression coefficients showed that SSS is mainly constrained by disulfide bonds, which almost have no effects on SIDS. CONCLUSIONS: Structural changes in homologous protein families could be rationally explained by a bilinear model combining amino acid substitutions and indels. These results may further improve our understanding of the evolutionary mechanisms of protein structures.
|