Solid Electrolyte Interface in Zn-Based Battery Systems
Abstract Due to its high theoretical capacity (820 mAh g−1), low standard electrode potential (− 0.76 V vs. SHE), excellent stability in aqueous solutions, low cost, environmental friendliness and intrinsically high safety, zinc (Zn)-based batteries have attracted much attention in developing new en...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2022-10-01
|
Series: | Nano-Micro Letters |
Subjects: | |
Online Access: | https://doi.org/10.1007/s40820-022-00939-w |