Dynein Transmits Polarized Actomyosin Cortical Flows to Promote Centrosome Separation

The two centrosomes present at the onset of mitosis must separate in a timely and accurate fashion to ensure proper bipolar spindle assembly. The minus-end-directed motor dynein plays a pivotal role in centrosome separation, but the underlying mechanisms remain elusive, particularly regarding how dy...

Full description

Bibliographic Details
Main Authors: Alessandro De Simone, François Nédélec, Pierre Gönczy
Format: Article
Language:English
Published: Elsevier 2016-03-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124716300936
Description
Summary:The two centrosomes present at the onset of mitosis must separate in a timely and accurate fashion to ensure proper bipolar spindle assembly. The minus-end-directed motor dynein plays a pivotal role in centrosome separation, but the underlying mechanisms remain elusive, particularly regarding how dynein coordinates this process in space and time. We addressed these questions in the one-cell C. elegans embryo, using a combination of 3D time-lapse microscopy and computational modeling. Our analysis reveals that centrosome separation is powered by the joint action of dynein at the nuclear envelope and at the cell cortex. Strikingly, we demonstrate that dynein at the cell cortex acts as a force-transmitting device that harnesses polarized actomyosin cortical flows initiated by the centrosomes earlier in the cell cycle. This mechanism elegantly couples cell polarization with centrosome separation, thus ensuring faithful cell division.
ISSN:2211-1247