Two component regularity for the Navier-Stokes equations

We consider the regularity of weak solutions to the Navier-Stokes equations in $mathbb{R}^3$. Let $u:=(u_1,u_2,u_3)$ be a weak solution and $widetilde{u}:=(u_1,u_2,0)$. We prove that $u$ is strong solution if $ ablawidetilde{u}$ satisfy Serrin's type criterion.

Bibliographic Details
Main Authors: Jishan Fan, Hongjun Gao
Format: Article
Language:English
Published: Texas State University 2009-09-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2009/121/abstr.html