Chromone-based monoamine oxidase B inhibitor with potential iron-chelating activity for the treatment of Alzheimer’s disease

AbstractBased on the multitarget-directed ligands (MTDLs) strategy, a series of chromone-hydroxypyridinone hybrids were designed, synthesised, and evaluated as potential multimodal anti-AD ligands. Prospective iron-chelating effects and favourable monoamine oxidase B (MAO-B) inhibitory activities we...

Full description

Bibliographic Details
Main Authors: Changjun Zhang, Yujia Zhang, Yangjing Lv, Jianan Guo, Bianbian Gao, Yi Lu, Anjie Zang, Xi Zhu, Tao Zhou, Yuanyuan Xie
Format: Article
Language:English
Published: Taylor & Francis Group 2023-12-01
Series:Journal of Enzyme Inhibition and Medicinal Chemistry
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/14756366.2022.2134358
Description
Summary:AbstractBased on the multitarget-directed ligands (MTDLs) strategy, a series of chromone-hydroxypyridinone hybrids were designed, synthesised, and evaluated as potential multimodal anti-AD ligands. Prospective iron-chelating effects and favourable monoamine oxidase B (MAO-B) inhibitory activities were observed for most of the compounds. Pharmacological assays led to the identification of compound 17d, which exhibited favourable iron-chelating potential (pFe3+ = 18.52) and selective hMAO-B inhibitory activity (IC50 = 67.02 ± 4.3 nM, SI = 11). Docking simulation showed that 17d occupied both the substrate and the entrance cavity of MAO-B, and established several key interactions with the pocket residues. Moreover, 17d was determined to cross the blood–brain barrier (BBB), and can significantly ameliorate scopolamine-induced cognitive impairment in AD mice. Despite its undesired pharmacokinetic property, 17d remains a promising multifaceted agent that is worth further investigation.
ISSN:1475-6366
1475-6374