Degenerate r-truncated Stirling numbers
For any positive integer $ r $, the $ r $-truncated (or $ r $-associated) Stirling number of the second kind $ S_{2}^{(r)}(n, k) $ enumerates the number of partitions of the set $ \{1, 2, 3, \dots, n\} $ into $ k $ non-empty disjoint subsets, such that each subset contains at least $ r $ elements. W...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2023-09-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/math.20231322?viewType=HTML |