Oscillation of arbitrary-order derivatives of solutions to linear differential equations taking small functions in the unit disc

In this article, we study the relationship between solutions and their derivatives of the differential equation $$ f''+A(z)f'+B(z)f=F(z), $$ where $A(z), B(z), F(z)$ are meromorphic functions of finite iterated p-order in the unit disc. We obtain some oscillation theorems for $...

Szczegółowa specyfikacja

Opis bibliograficzny
Główni autorzy: Pan Gong, Li-Peng Xiao
Format: Artykuł
Język:English
Wydane: Texas State University 2015-03-01
Seria:Electronic Journal of Differential Equations
Hasła przedmiotowe:
Dostęp online:http://ejde.math.txstate.edu/Volumes/2015/68/abstr.html
Opis
Streszczenie:In this article, we study the relationship between solutions and their derivatives of the differential equation $$ f''+A(z)f'+B(z)f=F(z), $$ where $A(z), B(z), F(z)$ are meromorphic functions of finite iterated p-order in the unit disc. We obtain some oscillation theorems for $f^{(j)}(z)-\varphi(z)$, where f is a solution and $\varphi(z)$ is a small function.
ISSN:1072-6691