Variable Selection of Heterogeneous Spatial Autoregressive Models via Double-Penalized Likelihood
Heteroscedasticity is often encountered in spatial-data analysis, so a new class of heterogeneous spatial autoregressive models is introduced in this paper, where the variance parameters are allowed to depend on some explanatory variables. Here, we are interested in the problem of parameter estimati...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-06-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/14/6/1200 |