Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids

Abstract Organ-on-a-chip systems combine microfluidics, cell biology, and tissue engineering to culture 3D organ-specific in vitro models that recapitulate the biology and physiology of their in vivo counterparts. Here, we have developed a multiplex platform that automates the culture of individual...

Full description

Bibliographic Details
Main Authors: Spencer T. Seiler, Gary L. Mantalas, John Selberg, Sergio Cordero, Sebastian Torres-Montoya, Pierre V. Baudin, Victoria T. Ly, Finn Amend, Liam Tran, Ryan N. Hoffman, Marco Rolandi, Richard E. Green, David Haussler, Sofie R. Salama, Mircea Teodorescu
Format: Article
Language:English
Published: Nature Portfolio 2022-11-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-20096-9
_version_ 1811186873704382464
author Spencer T. Seiler
Gary L. Mantalas
John Selberg
Sergio Cordero
Sebastian Torres-Montoya
Pierre V. Baudin
Victoria T. Ly
Finn Amend
Liam Tran
Ryan N. Hoffman
Marco Rolandi
Richard E. Green
David Haussler
Sofie R. Salama
Mircea Teodorescu
author_facet Spencer T. Seiler
Gary L. Mantalas
John Selberg
Sergio Cordero
Sebastian Torres-Montoya
Pierre V. Baudin
Victoria T. Ly
Finn Amend
Liam Tran
Ryan N. Hoffman
Marco Rolandi
Richard E. Green
David Haussler
Sofie R. Salama
Mircea Teodorescu
author_sort Spencer T. Seiler
collection DOAJ
description Abstract Organ-on-a-chip systems combine microfluidics, cell biology, and tissue engineering to culture 3D organ-specific in vitro models that recapitulate the biology and physiology of their in vivo counterparts. Here, we have developed a multiplex platform that automates the culture of individual organoids in isolated microenvironments at user-defined media flow rates. Programmable workflows allow the use of multiple reagent reservoirs that may be applied to direct differentiation, study temporal variables, and grow cultures long term. Novel techniques in polydimethylsiloxane (PDMS) chip fabrication are described here that enable features on the upper and lower planes of a single PDMS substrate. RNA sequencing (RNA-seq) analysis of automated cerebral cortex organoid cultures shows benefits in reducing glycolytic and endoplasmic reticulum stress compared to conventional in vitro cell cultures.
first_indexed 2024-04-11T13:53:35Z
format Article
id doaj.art-49bad5dca74f4ddbb438348058868746
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-04-11T13:53:35Z
publishDate 2022-11-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-49bad5dca74f4ddbb4383480588687462022-12-22T04:20:27ZengNature PortfolioScientific Reports2045-23222022-11-0112111210.1038/s41598-022-20096-9Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoidsSpencer T. Seiler0Gary L. Mantalas1John Selberg2Sergio Cordero3Sebastian Torres-Montoya4Pierre V. Baudin5Victoria T. Ly6Finn Amend7Liam Tran8Ryan N. Hoffman9Marco Rolandi10Richard E. Green11David Haussler12Sofie R. Salama13Mircea Teodorescu14UC Santa Cruz Genomics Institute, University of California Santa CruzUC Santa Cruz Genomics Institute, University of California Santa CruzDepartment of Electrical and Computer Engineering, University of California Santa CruzDepartment of Electrical and Computer Engineering, University of California Santa CruzUC Santa Cruz Genomics Institute, University of California Santa CruzUC Santa Cruz Genomics Institute, University of California Santa CruzUC Santa Cruz Genomics Institute, University of California Santa CruzDepartment of Electrical and Computer Engineering, University of California Santa CruzUC Santa Cruz Genomics Institute, University of California Santa CruzUC Santa Cruz Genomics Institute, University of California Santa CruzUC Santa Cruz Genomics Institute, University of California Santa CruzUC Santa Cruz Genomics Institute, University of California Santa CruzUC Santa Cruz Genomics Institute, University of California Santa CruzUC Santa Cruz Genomics Institute, University of California Santa CruzUC Santa Cruz Genomics Institute, University of California Santa CruzAbstract Organ-on-a-chip systems combine microfluidics, cell biology, and tissue engineering to culture 3D organ-specific in vitro models that recapitulate the biology and physiology of their in vivo counterparts. Here, we have developed a multiplex platform that automates the culture of individual organoids in isolated microenvironments at user-defined media flow rates. Programmable workflows allow the use of multiple reagent reservoirs that may be applied to direct differentiation, study temporal variables, and grow cultures long term. Novel techniques in polydimethylsiloxane (PDMS) chip fabrication are described here that enable features on the upper and lower planes of a single PDMS substrate. RNA sequencing (RNA-seq) analysis of automated cerebral cortex organoid cultures shows benefits in reducing glycolytic and endoplasmic reticulum stress compared to conventional in vitro cell cultures.https://doi.org/10.1038/s41598-022-20096-9
spellingShingle Spencer T. Seiler
Gary L. Mantalas
John Selberg
Sergio Cordero
Sebastian Torres-Montoya
Pierre V. Baudin
Victoria T. Ly
Finn Amend
Liam Tran
Ryan N. Hoffman
Marco Rolandi
Richard E. Green
David Haussler
Sofie R. Salama
Mircea Teodorescu
Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids
Scientific Reports
title Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids
title_full Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids
title_fullStr Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids
title_full_unstemmed Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids
title_short Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids
title_sort modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids
url https://doi.org/10.1038/s41598-022-20096-9
work_keys_str_mv AT spencertseiler modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT garylmantalas modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT johnselberg modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT sergiocordero modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT sebastiantorresmontoya modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT pierrevbaudin modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT victoriatly modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT finnamend modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT liamtran modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT ryannhoffman modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT marcorolandi modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT richardegreen modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT davidhaussler modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT sofiersalama modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids
AT mirceateodorescu modularautomatedmicrofluidiccellcultureplatformreducesglycolyticstressincerebralcortexorganoids