Very Short-Term Solar Power Forecasting Using a Frequency Incorporated Deep Learning Model

This paper aims to forecast solar power in very short horizons to assist in real-time distribution system operations. Popular machine learning methods for time series forecasting are studied, including recurrent neural networks with Long Short-Term Memory (LSTM). Although LSTM networks perform well...

Ausführliche Beschreibung

Bibliographische Detailangaben
Hauptverfasser: Hossein Panamtash, Shahrzad Mahdavi, Qun Zhou Sun, Guo-Jun Qi, Hongrui Liu, Aleksandar Dimitrovski
Format: Artikel
Sprache:English
Veröffentlicht: IEEE 2023-01-01
Schriftenreihe:IEEE Open Access Journal of Power and Energy
Schlagworte:
Online Zugang:https://ieeexplore.ieee.org/document/10179133/