Heteroepitaxial Ge MOS Devices on Si Using Composite AlAs/GaAs Buffer

Structural and electrical characteristics of epitaxial germanium (Ge) heterogeneously integrated on silicon (Si) via a composite, large bandgap AlAs/GaAs buffer are investigated. Electrical characteristics of N-type metal-oxide-semiconductor (MOS) capacitors, fabricated from the aforementioned mater...

Full description

Bibliographic Details
Main Authors: Peter D. Nguyen, Michael Brian Clavel, Patrick S. Goley, Jheng-Sin Liu, Noah P. Allen, Louis J. Guido, Mantu K. Hudait
Format: Article
Language:English
Published: IEEE 2015-01-01
Series:IEEE Journal of the Electron Devices Society
Subjects:
Online Access:https://ieeexplore.ieee.org/document/7093118/
Description
Summary:Structural and electrical characteristics of epitaxial germanium (Ge) heterogeneously integrated on silicon (Si) via a composite, large bandgap AlAs/GaAs buffer are investigated. Electrical characteristics of N-type metal-oxide-semiconductor (MOS) capacitors, fabricated from the aforementioned material stack are then presented. Simulated and experimental X-ray rocking curves show distinct Ge, AlAs, and GaAs epilayer peaks. Moreover, secondary ion mass spectrometry, energy dispersive X-ray spectroscopy (EDS) profile, and EDS line profile suggest limited interdiffusion of the underlying buffer into the Ge layer, which is further indicative of the successful growth of device-quality epitaxial Ge layer. The Ge MOS capacitor devices demonstrated low frequency dispersion of 1.80% per decade, low frequency-dependent flat-band voltage, VFB, shift of 153 mV, efficient Fermi level movement, and limited C-V stretch out. Low interface state density (Dit) from 8.55 &#x00D7; 10<sup>11</sup> to 1.09 &#x00D7; 10<sup>12</sup> cm<sup>-2</sup> eV<sup>-1</sup> is indicative of a high-quality oxide/Ge heterointerface, an effective electrical passivation of the Ge surface, and a Ge epitaxy with minimal defects. These superior electrical and material characteristics suggest the feasibility of utilizing large bandgap III-V buffers in the heterointegration of high-mobility channel materials on Si for future high-speed complementary metal-oxide semiconductor logic applications.
ISSN:2168-6734