Statistical inference for nonergodic weighted fractional Vasicek models
A problem of drift parameter estimation is studied for a nonergodic weighted fractional Vasicek model defined as $d{X_{t}}=\theta (\mu +{X_{t}})dt+d{B_{t}^{a,b}}$, $t\ge 0$, with unknown parameters $\theta >0$, $\mu \in \mathbb{R}$ and $\alpha :=\theta \mu $, whereas ${B^{a,b}}:=\{{B_{t}^{a,b}},t...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
VTeX
2021-03-01
|
Series: | Modern Stochastics: Theory and Applications |
Subjects: | |
Online Access: | https://www.vmsta.org/doi/10.15559/21-VMSTA176 |