Statistical inference for nonergodic weighted fractional Vasicek models

A problem of drift parameter estimation is studied for a nonergodic weighted fractional Vasicek model defined as $d{X_{t}}=\theta (\mu +{X_{t}})dt+d{B_{t}^{a,b}}$, $t\ge 0$, with unknown parameters $\theta >0$, $\mu \in \mathbb{R}$ and $\alpha :=\theta \mu $, whereas ${B^{a,b}}:=\{{B_{t}^{a,b}},t...

Full description

Bibliographic Details
Main Authors: Khalifa Es-Sebaiy, Mishari Al-Foraih, Fares Alazemi
Format: Article
Language:English
Published: VTeX 2021-03-01
Series:Modern Stochastics: Theory and Applications
Subjects:
Online Access:https://www.vmsta.org/doi/10.15559/21-VMSTA176