Accelerating DNN Training Through Selective Localized Learning
Training Deep Neural Networks (DNNs) places immense compute requirements on the underlying hardware platforms, expending large amounts of time and energy. We propose LoCal+SGD, a new algorithmic approach to accelerate DNN training by selectively combining localized or Hebbian learning within a Stoch...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2022-01-01
|
Series: | Frontiers in Neuroscience |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fnins.2021.759807/full |