Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells
A goal of cancer research is to reveal cell subsets linked to continuous clinical outcomes to generate new therapeutic and biomarker hypotheses. We introduce a machine learning algorithm, Risk Assessment Population IDentification (RAPID), that is unsupervised and automated, identifies phenotypically...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
eLife Sciences Publications Ltd
2020-06-01
|
Series: | eLife |
Subjects: | |
Online Access: | https://elifesciences.org/articles/56879 |