DNA Hypomethylation in the TNF-Alpha Gene Predicts Rheumatoid Arthritis Classification in Patients with Early Inflammatory Symptoms
Biomarkers for the classification of rheumatoid arthritis (RA), and particularly for anti-citrullinated peptide antibody (ACPA)-negative patients, remain an important hurdle for the early initiation of treatment. Taking advantage of DNA-methylation patterns specific to early RA, quantitative methyla...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-09-01
|
Series: | Cells |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4409/12/19/2376 |
_version_ | 1827722688721846272 |
---|---|
author | Rujiraporn Pitaksalee Rekha Parmar Richard Hodgett Paul Emery Frederique Ponchel |
author_facet | Rujiraporn Pitaksalee Rekha Parmar Richard Hodgett Paul Emery Frederique Ponchel |
author_sort | Rujiraporn Pitaksalee |
collection | DOAJ |
description | Biomarkers for the classification of rheumatoid arthritis (RA), and particularly for anti-citrullinated peptide antibody (ACPA)-negative patients, remain an important hurdle for the early initiation of treatment. Taking advantage of DNA-methylation patterns specific to early RA, quantitative methylation-specific qPCR (qMSP) offers a robust technology for the development of biomarkers. We developed assays and established their value as RA classification biomarkers. Methods: DNA-methylation data were screened to select candidate CpGs to design qMSP assays. Eight assays were developed and tested on two early inflammatory arthritis cohorts. Logistic regression and bootstrapping were used to demonstrate the added value of the qMSP assays. Result: Differentially methylated CpG data were screened for candidate CpG, thereby meeting the qMSP assay requirements. The top CpG candidate was in the TNF gene, for which we successfully developed a qMSP assay. Significantly lower DNA-methylation levels were observed in RA (<i>p</i> < 4 × 10<sup>−9</sup>), with a high predictive value (OR < 0.54/AUC < 0.198) in both cohorts (n = 127/n = 157). Regression using both datasets showed improved accuracy = 87.7% and AUC = 0.944 over the model using only clinical variables (accuracy = 85.2%, AUC = 0.917). Similar data were obtained in ACPA-negative patients (n = 167, accuracy = 82.6%, AUC = 0.930) compared to the clinical variable model (accuracy = 79.5%, AUC = 0.892). Bootstrapping using 2000 datasets confirmed that the AUCs for the clinical+TNF-qMSP model had significant added value in both analyses. Conclusion: The qMSP technology is robust and can successfully be developed with a high specificity of the TNF qMSP assay for RA in patients with early inflammatory arthritis. It should assist classification in ACPA-negative patients, providing a means of reducing time to diagnosis and treatment. |
first_indexed | 2024-03-10T21:47:29Z |
format | Article |
id | doaj.art-4b32dac613bf4f47a768e9ec0c448b7e |
institution | Directory Open Access Journal |
issn | 2073-4409 |
language | English |
last_indexed | 2024-03-10T21:47:29Z |
publishDate | 2023-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Cells |
spelling | doaj.art-4b32dac613bf4f47a768e9ec0c448b7e2023-11-19T14:12:55ZengMDPI AGCells2073-44092023-09-011219237610.3390/cells12192376DNA Hypomethylation in the TNF-Alpha Gene Predicts Rheumatoid Arthritis Classification in Patients with Early Inflammatory SymptomsRujiraporn Pitaksalee0Rekha Parmar1Richard Hodgett2Paul Emery3Frederique Ponchel4Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, UKLeeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, UKLeeds University Business School, University of Leeds, Leeds LS2 9JT, UKLeeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, UKLeeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, UKBiomarkers for the classification of rheumatoid arthritis (RA), and particularly for anti-citrullinated peptide antibody (ACPA)-negative patients, remain an important hurdle for the early initiation of treatment. Taking advantage of DNA-methylation patterns specific to early RA, quantitative methylation-specific qPCR (qMSP) offers a robust technology for the development of biomarkers. We developed assays and established their value as RA classification biomarkers. Methods: DNA-methylation data were screened to select candidate CpGs to design qMSP assays. Eight assays were developed and tested on two early inflammatory arthritis cohorts. Logistic regression and bootstrapping were used to demonstrate the added value of the qMSP assays. Result: Differentially methylated CpG data were screened for candidate CpG, thereby meeting the qMSP assay requirements. The top CpG candidate was in the TNF gene, for which we successfully developed a qMSP assay. Significantly lower DNA-methylation levels were observed in RA (<i>p</i> < 4 × 10<sup>−9</sup>), with a high predictive value (OR < 0.54/AUC < 0.198) in both cohorts (n = 127/n = 157). Regression using both datasets showed improved accuracy = 87.7% and AUC = 0.944 over the model using only clinical variables (accuracy = 85.2%, AUC = 0.917). Similar data were obtained in ACPA-negative patients (n = 167, accuracy = 82.6%, AUC = 0.930) compared to the clinical variable model (accuracy = 79.5%, AUC = 0.892). Bootstrapping using 2000 datasets confirmed that the AUCs for the clinical+TNF-qMSP model had significant added value in both analyses. Conclusion: The qMSP technology is robust and can successfully be developed with a high specificity of the TNF qMSP assay for RA in patients with early inflammatory arthritis. It should assist classification in ACPA-negative patients, providing a means of reducing time to diagnosis and treatment.https://www.mdpi.com/2073-4409/12/19/2376DNA-methylationqMSP biomarkerrheumatoid arthritis |
spellingShingle | Rujiraporn Pitaksalee Rekha Parmar Richard Hodgett Paul Emery Frederique Ponchel DNA Hypomethylation in the TNF-Alpha Gene Predicts Rheumatoid Arthritis Classification in Patients with Early Inflammatory Symptoms Cells DNA-methylation qMSP biomarker rheumatoid arthritis |
title | DNA Hypomethylation in the TNF-Alpha Gene Predicts Rheumatoid Arthritis Classification in Patients with Early Inflammatory Symptoms |
title_full | DNA Hypomethylation in the TNF-Alpha Gene Predicts Rheumatoid Arthritis Classification in Patients with Early Inflammatory Symptoms |
title_fullStr | DNA Hypomethylation in the TNF-Alpha Gene Predicts Rheumatoid Arthritis Classification in Patients with Early Inflammatory Symptoms |
title_full_unstemmed | DNA Hypomethylation in the TNF-Alpha Gene Predicts Rheumatoid Arthritis Classification in Patients with Early Inflammatory Symptoms |
title_short | DNA Hypomethylation in the TNF-Alpha Gene Predicts Rheumatoid Arthritis Classification in Patients with Early Inflammatory Symptoms |
title_sort | dna hypomethylation in the tnf alpha gene predicts rheumatoid arthritis classification in patients with early inflammatory symptoms |
topic | DNA-methylation qMSP biomarker rheumatoid arthritis |
url | https://www.mdpi.com/2073-4409/12/19/2376 |
work_keys_str_mv | AT rujirapornpitaksalee dnahypomethylationinthetnfalphagenepredictsrheumatoidarthritisclassificationinpatientswithearlyinflammatorysymptoms AT rekhaparmar dnahypomethylationinthetnfalphagenepredictsrheumatoidarthritisclassificationinpatientswithearlyinflammatorysymptoms AT richardhodgett dnahypomethylationinthetnfalphagenepredictsrheumatoidarthritisclassificationinpatientswithearlyinflammatorysymptoms AT paulemery dnahypomethylationinthetnfalphagenepredictsrheumatoidarthritisclassificationinpatientswithearlyinflammatorysymptoms AT frederiqueponchel dnahypomethylationinthetnfalphagenepredictsrheumatoidarthritisclassificationinpatientswithearlyinflammatorysymptoms |