The impacts of active and self-supervised learning on efficient annotation of single-cell expression data
Abstract A crucial step in the analysis of single-cell data is annotating cells to cell types and states. While a myriad of approaches has been proposed, manual labeling of cells to create training datasets remains tedious and time-consuming. In the field of machine learning, active and self-supervi...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2024-02-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-024-45198-y |