Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma
Abstract Background One approach to improving the personalized treatment of cancer is to understand the cellular signaling transduction pathways that cause cancer at the level of the individual patient. In this study, we used unsupervised deep learning to learn the hierarchical structure within canc...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2017-10-01
|
Series: | BMC Bioinformatics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12859-017-1798-2 |