Chrysanthemum-like high-entropy diboride nanoflowers: A new class of high-entropy nanomaterials
Abstract High-entropy nanomaterials have been arousing considerable interest in recent years due to their huge composition space, unique microstructure, and adjustable properties. Previous studies focused mainly on high-entropy nanoparticles, while other high-entropy nanomaterials were rarely report...
প্রধান লেখক: | , , , |
---|---|
বিন্যাস: | প্রবন্ধ |
ভাষা: | English |
প্রকাশিত: |
Tsinghua University Press
2020-06-01
|
মালা: | Journal of Advanced Ceramics |
বিষয়গুলি: | |
অনলাইন ব্যবহার করুন: | https://doi.org/10.1007/s40145-020-0373-x |
সংক্ষিপ্ত: | Abstract High-entropy nanomaterials have been arousing considerable interest in recent years due to their huge composition space, unique microstructure, and adjustable properties. Previous studies focused mainly on high-entropy nanoparticles, while other high-entropy nanomaterials were rarely reported. Herein, we reported a new class of high-entropy nanomaterials, namely (Ta0.2Nb0.2Ti0.2W0.2Mo0.2)B2 high-entropy diboride (HEB-1) nanoflowers, for the first time. Formation possibility of HEB-1 was first theoretically analyzed from two aspects of lattice size difference and chemical reaction thermodynamics. We then successfully synthesized HEB-1 nanoflowers by a facile molten salt synthesis method at 1423 K. The as-synthesized HEB-1 nanoflowers showed an interesting chrysanthemum-like morphology assembled from numerous well-aligned nanorods with diameters of 20–30 nm and lengths of 100–200 nm. Meanwhile, these nanorods possessed a single-crystalline hexagonal structure of metal diborides and highly compositional uniformity from nanoscale to microscale. In addition, the formation of the as-synthesized HEB-1 nanoflowers could be well interpreted by a classical surface-controlled crystal growth theory. This work not only enriches the categories of high-entropy nanomaterials but also opens up a new research field on high-entropy diboride nanomaterials. |
---|---|
আইএসএসএন: | 2226-4108 2227-8508 |