Summary: | To address issues like edge collapse and subsurface damage during the cutting process of SiC wafers, a model for cutting SiC wafers with ultra-thin diamond blades was established by combining Python language and Abaqus finite element analysis software. The effects of cutting parameters on cutting force, cutting temperature, wafer cutting edge morphology, cutting edge damage width and subsurface damage depth of wafer were studied. The results show that cutting force and cutting temperature are positively correlated with cutting depth, and there is an optimal value for the damage degree of the cutting edge and the subsurface damage depth. When the cutting depth is 6 μm, the cutting effect of SiC wafer is the best. The surface cutting edge damage width is 8 μm, the damage area is 4 905.56 μm2, the subsurface damage depth is 10.67 μm and the damage area is 7 022.18 μm2. In the high-speed cutting stage, where the cutting speed ranges from 60 to 121 m/s, cutting speed has no significant effect on cutting force, wafer temperature, wafer cutting edge morphology or subsurface damage.
|