3D目标检测方法研究综述

3D 目标检测是自动驾驶、虚拟现实、机器人等应用领域的重要基础问题,其目的是从无序点云中框取出描述目标最准确的3D框,例如紧密包围行人或车辆点云的3D框,并给出目标3D框的位置、尺寸和朝向。如今,基于双目视觉、RGB-D相机、激光雷达构建的纯点云的3D目标检测,融合图像和点云多模态信息的3D目标检测,是两类主要的方法。首先介绍了3D点云的不同表示形式和特征提取方法,然后从传统机器学习类算法、非融合深度学习类算法、基于多模态融合的深度学习类算法3个层面,逐层递进地介绍各类3D目标检测方法,对类别内部和各类之间的方法进行分析和对比,深入分析了各类方法之间的区别和联系,最后论述了3D目标检测仍存在的...

Full description

Bibliographic Details
Main Author: 黄哲, 王永才, 李德英
Format: Article
Language:zho
Published: POSTS&TELECOM PRESS Co., LTD 2023-03-01
Series:智能科学与技术学报
Subjects:
Online Access:https://www.infocomm-journal.com/znkx/CN/10.11959/j.issn.2096-6652.202312