Prototype Foamy Virus Integrase Displays Unique Biochemical Activities among Retroviral Integrases

Integrases of different retroviruses assemble as functional complexes with varying multimers of the protein. Retroviral integrases require a divalent metal cation to perform one-step transesterification catalysis. Tetrameric prototype foamy virus (PFV) intasomes assembled from purified integrase and...

Full description

Bibliographic Details
Main Authors: Anthony J. Rabe, Yow Yong Tan, Ross C. Larue, Kristine E. Yoder
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/11/12/1910
Description
Summary:Integrases of different retroviruses assemble as functional complexes with varying multimers of the protein. Retroviral integrases require a divalent metal cation to perform one-step transesterification catalysis. Tetrameric prototype foamy virus (PFV) intasomes assembled from purified integrase and viral DNA oligonucleotides were characterized for their activity in the presence of different cations. While most retroviral integrases are inactive in calcium, PFV intasomes appear to be uniquely capable of catalysis in calcium. The PFV intasomes also contrast with other retroviral integrases by displaying an inverse correlation of activity with increasing manganese beginning at relatively low concentrations. The intasomes were found to be significantly more active in the presence of chloride co-ions compared to acetate. While HIV-1 integrase appears to commit to a target DNA within 20 s, PFV intasomes do not commit to target DNA during their reaction lifetime. Together, these data highlight the unique biochemical activities of PFV integrase compared to other retroviral integrases.
ISSN:2218-273X