Decision Boundary-Based Anomaly Detection Model Using Improved AnoGAN From ECG Data
Arrhythmia detection through deep learning is mainly classified through supervised learning. Supervised learning progresses through the labeled data. However, in the medical field, it is challenging to collect ECG data of patients with arrhythmia than ECG data of healthy people, and thus data bias o...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9110549/ |