The Effect of the Expression of the Antiapoptotic BHRF1 Gene on the Metabolic Behavior of a Hybridoma Cell Line

One of the most important limitations of mammalian cells-based bioprocesses, and particularly hybridoma cell lines, is the accelerated metabolism related to glucose and glutamine consumption. The high uptake rates of glucose and glutamine (i.e., the main sources of carbon, nitrogen and energy) lead...

Full description

Bibliographic Details
Main Authors: Iván Martínez-Monge, Pere Comas, David Catalán-Tatjer, Jordi Prat, Antoni Casablancas, Carlos Paredes, Martí Lecina, Jordi Joan Cairó
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/14/6258
_version_ 1797527724847267840
author Iván Martínez-Monge
Pere Comas
David Catalán-Tatjer
Jordi Prat
Antoni Casablancas
Carlos Paredes
Martí Lecina
Jordi Joan Cairó
author_facet Iván Martínez-Monge
Pere Comas
David Catalán-Tatjer
Jordi Prat
Antoni Casablancas
Carlos Paredes
Martí Lecina
Jordi Joan Cairó
author_sort Iván Martínez-Monge
collection DOAJ
description One of the most important limitations of mammalian cells-based bioprocesses, and particularly hybridoma cell lines, is the accelerated metabolism related to glucose and glutamine consumption. The high uptake rates of glucose and glutamine (i.e., the main sources of carbon, nitrogen and energy) lead to the production and accumulation of large amounts of lactate and ammonia in culture broth. Lactate and/or ammonia accumulation, together with the depletion of the main nutrients, are the major causes of apoptosis in hybridoma cell cultures. The KB26.5 hybridoma cell line, producing an IgG<sub>3</sub>, was engineered with BHRF1 (KB26.5-BHRF1), an Epstein–Barr virus-encoded early protein homologous to the antiapoptotic protein Bcl-2, with the aim of protecting the hybridoma cell line from apoptosis. Surprisingly, besides achieving effective protection from apoptosis, the expression of BHRF1 modified the metabolism of the hybridoma cell line. Cell physiology and metabolism analyses of the original KB26.5 and KB26.5-BHRF1 revealed an increase of cell growth rate, a reduction of glucose and glutamine consumption, as well as a decrease in lactate secretion in KB26.5-BHRF1 cells. A flux balance analysis allowed us to quantify the intracellular fluxes of both cell lines. The main metabolic differences were identified in glucose consumption and, consequently, the production of lactate. The lactate production flux was reduced by 60%, since the need for NADH regeneration in the cytoplasm decreased due to a more than 50% reduction in glucose uptake. In general terms, the BHRF1 engineered cell line showed a more efficient metabolism, with an increase in biomass volumetric productivity under identical culture conditions.
first_indexed 2024-03-10T09:46:50Z
format Article
id doaj.art-51ee68f70b814f5888d58b7287a218d8
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-10T09:46:50Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-51ee68f70b814f5888d58b7287a218d82023-11-22T03:06:40ZengMDPI AGApplied Sciences2076-34172021-07-011114625810.3390/app11146258The Effect of the Expression of the Antiapoptotic BHRF1 Gene on the Metabolic Behavior of a Hybridoma Cell LineIván Martínez-Monge0Pere Comas1David Catalán-Tatjer2Jordi Prat3Antoni Casablancas4Carlos Paredes5Martí Lecina6Jordi Joan Cairó7The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, DenmarkChemical, Biological and Environmental Engineering Department, Campus Bellatera, Universitat Autònoma de Barcelona, Edifici Q, Carretera de Cerdanyola, s/n., 08193 Bellaterra, SpainThe Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, DenmarkChemical, Biological and Environmental Engineering Department, Campus Bellatera, Universitat Autònoma de Barcelona, Edifici Q, Carretera de Cerdanyola, s/n., 08193 Bellaterra, SpainChemical, Biological and Environmental Engineering Department, Campus Bellatera, Universitat Autònoma de Barcelona, Edifici Q, Carretera de Cerdanyola, s/n., 08193 Bellaterra, SpainChemical, Biological and Environmental Engineering Department, Campus Bellatera, Universitat Autònoma de Barcelona, Edifici Q, Carretera de Cerdanyola, s/n., 08193 Bellaterra, SpainChemical, Biological and Environmental Engineering Department, Campus Bellatera, Universitat Autònoma de Barcelona, Edifici Q, Carretera de Cerdanyola, s/n., 08193 Bellaterra, SpainChemical, Biological and Environmental Engineering Department, Campus Bellatera, Universitat Autònoma de Barcelona, Edifici Q, Carretera de Cerdanyola, s/n., 08193 Bellaterra, SpainOne of the most important limitations of mammalian cells-based bioprocesses, and particularly hybridoma cell lines, is the accelerated metabolism related to glucose and glutamine consumption. The high uptake rates of glucose and glutamine (i.e., the main sources of carbon, nitrogen and energy) lead to the production and accumulation of large amounts of lactate and ammonia in culture broth. Lactate and/or ammonia accumulation, together with the depletion of the main nutrients, are the major causes of apoptosis in hybridoma cell cultures. The KB26.5 hybridoma cell line, producing an IgG<sub>3</sub>, was engineered with BHRF1 (KB26.5-BHRF1), an Epstein–Barr virus-encoded early protein homologous to the antiapoptotic protein Bcl-2, with the aim of protecting the hybridoma cell line from apoptosis. Surprisingly, besides achieving effective protection from apoptosis, the expression of BHRF1 modified the metabolism of the hybridoma cell line. Cell physiology and metabolism analyses of the original KB26.5 and KB26.5-BHRF1 revealed an increase of cell growth rate, a reduction of glucose and glutamine consumption, as well as a decrease in lactate secretion in KB26.5-BHRF1 cells. A flux balance analysis allowed us to quantify the intracellular fluxes of both cell lines. The main metabolic differences were identified in glucose consumption and, consequently, the production of lactate. The lactate production flux was reduced by 60%, since the need for NADH regeneration in the cytoplasm decreased due to a more than 50% reduction in glucose uptake. In general terms, the BHRF1 engineered cell line showed a more efficient metabolism, with an increase in biomass volumetric productivity under identical culture conditions.https://www.mdpi.com/2076-3417/11/14/6258hybridomagenome-scale metabolic modelantiapoptotic genemitochondrial transportBHRF1
spellingShingle Iván Martínez-Monge
Pere Comas
David Catalán-Tatjer
Jordi Prat
Antoni Casablancas
Carlos Paredes
Martí Lecina
Jordi Joan Cairó
The Effect of the Expression of the Antiapoptotic BHRF1 Gene on the Metabolic Behavior of a Hybridoma Cell Line
Applied Sciences
hybridoma
genome-scale metabolic model
antiapoptotic gene
mitochondrial transport
BHRF1
title The Effect of the Expression of the Antiapoptotic BHRF1 Gene on the Metabolic Behavior of a Hybridoma Cell Line
title_full The Effect of the Expression of the Antiapoptotic BHRF1 Gene on the Metabolic Behavior of a Hybridoma Cell Line
title_fullStr The Effect of the Expression of the Antiapoptotic BHRF1 Gene on the Metabolic Behavior of a Hybridoma Cell Line
title_full_unstemmed The Effect of the Expression of the Antiapoptotic BHRF1 Gene on the Metabolic Behavior of a Hybridoma Cell Line
title_short The Effect of the Expression of the Antiapoptotic BHRF1 Gene on the Metabolic Behavior of a Hybridoma Cell Line
title_sort effect of the expression of the antiapoptotic bhrf1 gene on the metabolic behavior of a hybridoma cell line
topic hybridoma
genome-scale metabolic model
antiapoptotic gene
mitochondrial transport
BHRF1
url https://www.mdpi.com/2076-3417/11/14/6258
work_keys_str_mv AT ivanmartinezmonge theeffectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline
AT perecomas theeffectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline
AT davidcatalantatjer theeffectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline
AT jordiprat theeffectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline
AT antonicasablancas theeffectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline
AT carlosparedes theeffectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline
AT martilecina theeffectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline
AT jordijoancairo theeffectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline
AT ivanmartinezmonge effectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline
AT perecomas effectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline
AT davidcatalantatjer effectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline
AT jordiprat effectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline
AT antonicasablancas effectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline
AT carlosparedes effectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline
AT martilecina effectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline
AT jordijoancairo effectoftheexpressionoftheantiapoptoticbhrf1geneonthemetabolicbehaviorofahybridomacellline