Universal approximation property of stochastic configuration networks for time series

Abstract For the purpose of processing sequential data, such as time series, and addressing the challenge of manually tuning the architecture of traditional recurrent neural networks (RNNs), this paper introduces a novel approach-the Recurrent Stochastic Configuration Network (RSCN). This network is...

Deskribapen osoa

Xehetasun bibliografikoak
Egile Nagusiak: Jin-Xi Zhang, Hangyi Zhao, Xuefeng Zhang
Formatua: Artikulua
Hizkuntza:English
Argitaratua: Springer 2024-03-01
Saila:Industrial Artificial Intelligence
Gaiak:
Sarrera elektronikoa:https://doi.org/10.1007/s44244-024-00017-7