Universal approximation property of stochastic configuration networks for time series
Abstract For the purpose of processing sequential data, such as time series, and addressing the challenge of manually tuning the architecture of traditional recurrent neural networks (RNNs), this paper introduces a novel approach-the Recurrent Stochastic Configuration Network (RSCN). This network is...
Päätekijät: | Jin-Xi Zhang, Hangyi Zhao, Xuefeng Zhang |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
Springer
2024-03-01
|
Sarja: | Industrial Artificial Intelligence |
Aiheet: | |
Linkit: | https://doi.org/10.1007/s44244-024-00017-7 |
Samankaltaisia teoksia
-
Efficiency optimization methods for stochastic configuration networks
Tekijä: Aijun Yan, et al.
Julkaistu: (2024-06-01) -
Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams
Tekijä: Pratama, Mahardhika, et al.
Julkaistu: (2021) -
Multi-Task Learning Based on Stochastic Configuration Networks
Tekijä: Xue-Mei Dong, et al.
Julkaistu: (2022-08-01) -
Corrigendum: Multi-task learning based on Stochastic Configuration Networks
Tekijä: Xue-Mei Dong, et al.
Julkaistu: (2023-09-01) -
Vibration Signal Classification Using Stochastic Configuration Networks Ensemble
Tekijä: Qinxia Wang, et al.
Julkaistu: (2024-06-01)