Universal approximation property of stochastic configuration networks for time series
Abstract For the purpose of processing sequential data, such as time series, and addressing the challenge of manually tuning the architecture of traditional recurrent neural networks (RNNs), this paper introduces a novel approach-the Recurrent Stochastic Configuration Network (RSCN). This network is...
Auteurs principaux: | Jin-Xi Zhang, Hangyi Zhao, Xuefeng Zhang |
---|---|
Format: | Article |
Langue: | English |
Publié: |
Springer
2024-03-01
|
Collection: | Industrial Artificial Intelligence |
Sujets: | |
Accès en ligne: | https://doi.org/10.1007/s44244-024-00017-7 |
Documents similaires
-
Efficiency optimization methods for stochastic configuration networks
par: Aijun Yan, et autres
Publié: (2024-06-01) -
Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams
par: Pratama, Mahardhika, et autres
Publié: (2021) -
Multi-Task Learning Based on Stochastic Configuration Networks
par: Xue-Mei Dong, et autres
Publié: (2022-08-01) -
Corrigendum: Multi-task learning based on Stochastic Configuration Networks
par: Xue-Mei Dong, et autres
Publié: (2023-09-01) -
Vibration Signal Classification Using Stochastic Configuration Networks Ensemble
par: Qinxia Wang, et autres
Publié: (2024-06-01)