Universal approximation property of stochastic configuration networks for time series

Abstract For the purpose of processing sequential data, such as time series, and addressing the challenge of manually tuning the architecture of traditional recurrent neural networks (RNNs), this paper introduces a novel approach-the Recurrent Stochastic Configuration Network (RSCN). This network is...

Description complète

Détails bibliographiques
Auteurs principaux: Jin-Xi Zhang, Hangyi Zhao, Xuefeng Zhang
Format: Article
Langue:English
Publié: Springer 2024-03-01
Collection:Industrial Artificial Intelligence
Sujets:
Accès en ligne:https://doi.org/10.1007/s44244-024-00017-7

Documents similaires