Universal approximation property of stochastic configuration networks for time series
Abstract For the purpose of processing sequential data, such as time series, and addressing the challenge of manually tuning the architecture of traditional recurrent neural networks (RNNs), this paper introduces a novel approach-the Recurrent Stochastic Configuration Network (RSCN). This network is...
主要な著者: | Jin-Xi Zhang, Hangyi Zhao, Xuefeng Zhang |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Springer
2024-03-01
|
シリーズ: | Industrial Artificial Intelligence |
主題: | |
オンライン・アクセス: | https://doi.org/10.1007/s44244-024-00017-7 |
類似資料
-
Efficiency optimization methods for stochastic configuration networks
著者:: Aijun Yan, 等
出版事項: (2024-06-01) -
Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams
著者:: Pratama, Mahardhika, 等
出版事項: (2021) -
Multi-Task Learning Based on Stochastic Configuration Networks
著者:: Xue-Mei Dong, 等
出版事項: (2022-08-01) -
Corrigendum: Multi-task learning based on Stochastic Configuration Networks
著者:: Xue-Mei Dong, 等
出版事項: (2023-09-01) -
Vibration Signal Classification Using Stochastic Configuration Networks Ensemble
著者:: Qinxia Wang, 等
出版事項: (2024-06-01)