Numerical Simulation of a Novel Method for PVT Growth of SiC by Adding a Graphite Block

SiC crystal is an excellent substrate material for high power electronic devices and high-frequency electronic devices. Being cost-effective and defect-free are the two biggest challenges at present. For the physical vapor transport (PVT) growth of a SiC single crystal, SiC powder is used as the sou...

Full description

Bibliographic Details
Main Authors: Hao Luo, Xuefeng Han, Yuanchao Huang, Deren Yang, Xiaodong Pi
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/11/12/1581
Description
Summary:SiC crystal is an excellent substrate material for high power electronic devices and high-frequency electronic devices. Being cost-effective and defect-free are the two biggest challenges at present. For the physical vapor transport (PVT) growth of a SiC single crystal, SiC powder is used as the source material, which determines the cost and the quality of the crystal. In this paper, we propose a new design in which graphite blocks are substituted for the non-sublimated SiC powder. Temperature distribution in the SiC powder, the evolution of the SiC powder, and the vapor transport are investigated by using finite element calculations. With the addition of graphite blocks, the utilization and sublimation rate of SiC powder is higher. In addition, the reverse vapor transport above the SiC powder is eliminated. This design provides a new idea to reduce the cost of SiC crystals in industrialization.
ISSN:2073-4352