A derivative-Hilbert operator acting on Dirichlet spaces
Let μ\mu be a positive Borel measure on the interval [0,1)\left[0,1). The Hankel matrix Hμ=(μn,k)n,k≥0{{\mathcal{ {\mathcal H} }}}_{\mu }={\left({\mu }_{n,k})}_{n,k\ge 0} with entries μn,k=μn+k{\mu }_{n,k}={\mu }_{n+k}, where μn=∫[0,1)tndμ(t){\mu }_{n}={\int }_{\left[0,1)}{t}^{n}{\rm{d}}\mu \left(t...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2023-02-01
|
Series: | Open Mathematics |
Subjects: | |
Online Access: | https://doi.org/10.1515/math-2022-0559 |