Sample-efficient multi-agent reinforcement learning with masked reconstruction.
Deep reinforcement learning (DRL) is a powerful approach that combines reinforcement learning (RL) and deep learning to address complex decision-making problems in high-dimensional environments. Although DRL has been remarkably successful, its low sample efficiency necessitates extensive training ti...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2023-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0291545 |