A Computationally-Efficient Probabilistic Approach to Model-Based Damage Diagnosis
This work presents a computationally-efficient, probabilistic approach to model-based damage diagnosis. Given measurement data, probability distributions of unknown damage parameters are estimated using Bayesian inference and Markov chain Monte Carlo (MCMC) sampling. Substantial computational speedu...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The Prognostics and Health Management Society
2017-06-01
|
Series: | International Journal of Prognostics and Health Management |
Subjects: | |
Online Access: | https://papers.phmsociety.org/index.php/ijphm/article/view/2637 |