MadNIS - Neural multi-channel importance sampling

Theory predictions for the LHC require precise numerical phase-space integration and generation of unweighted events. We combine machine-learned multi-channel weights with a normalizing flow for importance sampling, to improve classical methods for numerical integration. We develop an efficient bi-d...

Full description

Bibliographic Details
Main Author: Theo Heimel, Ramon Winterhalder, Anja Butter, Joshua Isaacson, Claudius Krause, Fabio Maltoni, Olivier Mattelaer, Tilman Plehn
Format: Article
Language:English
Published: SciPost 2023-10-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.15.4.141