Targeted plasma metabolomics combined with machine learning for the diagnosis of severe acute respiratory syndrome virus type 2

IntroductionThe routine clinical diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely restricted to real-time reverse transcription quantitative PCR (RT-qPCR), and tests that detect SARS-CoV-2 nucleocapsid antigen. Given the diagnostic delay and suboptimal sensitivity...

Full description

Bibliographic Details
Main Authors: Anthony T. Le, Manhong Wu, Afraz Khan, Nicholas Phillips, Pranav Rajpurkar, Megan Garland, Kayla Magid, Mamdouh Sibai, ChunHong Huang, Malaya K. Sahoo, Raffick Bowen, Tina M. Cowan, Benjamin A. Pinsky, Catherine A. Hogan
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-03-01
Series:Frontiers in Microbiology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmicb.2022.1059289/full
Description
Summary:IntroductionThe routine clinical diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely restricted to real-time reverse transcription quantitative PCR (RT-qPCR), and tests that detect SARS-CoV-2 nucleocapsid antigen. Given the diagnostic delay and suboptimal sensitivity associated with these respective methods, alternative diagnostic strategies are needed for acute infection.MethodsWe studied the use of a clinically validated liquid chromatography triple quadrupole method (LC/MS–MS) for detection of amino acids from plasma specimens. We applied machine learning models to distinguish between SARS-CoV-2-positive and negative samples and analyzed amino acid feature importance.ResultsA total of 200 samples were tested, including 70 from individuals with COVID-19, and 130 from negative controls. The top performing model overall allowed discrimination between SARS-CoV-2-positive and negative control samples with an area under the receiver operating characteristic curve (AUC) of 0.96 (95%CI 0.91, 1.00), overall sensitivity of 0.99 (95%CI 0.92, 1.00), and specificity of 0.92 (95%CI 0.85, 0.95).DiscussionThis approach holds potential as an alternative to existing methods for the rapid and accurate diagnosis of acute SARS-CoV-2 infection.
ISSN:1664-302X