Auto-Regression Model-Based Off-Line PID Controller Tuning: An Adaptive Strategy for DC Motor Control

Brushed (B) and Brushless (BL) DC motors constitute the cornerstone of mechatronic systems regardless their sizes (including miniaturized), in which both position and speed control tasks require the application of sophisticated algorithms. This manuscript addresses the initial step using time series...

Full description

Bibliographic Details
Main Authors: José A. Niembro-Ceceña, Roberto A. Gómez-Loenzo, Juvenal Rodríguez-Reséndiz, Omar Rodríguez-Abreo, Ákos Odry
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/13/8/1264
_version_ 1797408844014419968
author José A. Niembro-Ceceña
Roberto A. Gómez-Loenzo
Juvenal Rodríguez-Reséndiz
Omar Rodríguez-Abreo
Ákos Odry
author_facet José A. Niembro-Ceceña
Roberto A. Gómez-Loenzo
Juvenal Rodríguez-Reséndiz
Omar Rodríguez-Abreo
Ákos Odry
author_sort José A. Niembro-Ceceña
collection DOAJ
description Brushed (B) and Brushless (BL) DC motors constitute the cornerstone of mechatronic systems regardless their sizes (including miniaturized), in which both position and speed control tasks require the application of sophisticated algorithms. This manuscript addresses the initial step using time series analysis to forecast Back EMF values, thereby enabling the elaboration of real-time adaptive fine-tuning strategies for PID controllers in such a control system design problem. An Auto-Regressive Moving Average (ARMA) model is developed to estimate the DC motor parameter, which evolves in time due to the system’s imperfection (i.e., unpredictable duty cycle) and influences the closed-loop performance. The methodology is executed offline; thus, it highlights the applicability of collected BDC motor measurements in time series analysis. The proposed method updates the PID controller gains based on the Simulink ™ controller tuning toolbox. The contribution of this approach is shown in a comparative study that indicates an opportunity to use time series analysis to forecast DC motor parameters, to re-tune PID controller gains, and to obtain similar performance under the same perturbation conditions. The research demonstrates the practical applicability of the proposed method for fine-tuning/re-tuning controllers in real-time. The results show the inclusion of the time series analysis to recalculate controller gains as an alternative for adaptive control.
first_indexed 2024-03-09T04:04:29Z
format Article
id doaj.art-563a034a26b146b7bb5492de07586feb
institution Directory Open Access Journal
issn 2072-666X
language English
last_indexed 2024-03-09T04:04:29Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Micromachines
spelling doaj.art-563a034a26b146b7bb5492de07586feb2023-12-03T14:08:04ZengMDPI AGMicromachines2072-666X2022-08-01138126410.3390/mi13081264Auto-Regression Model-Based Off-Line PID Controller Tuning: An Adaptive Strategy for DC Motor ControlJosé A. Niembro-Ceceña0Roberto A. Gómez-Loenzo1Juvenal Rodríguez-Reséndiz2Omar Rodríguez-Abreo3Ákos Odry4Facultad de Informática, Universidad Autónoma de Querétaro, Querétaro 76230, MexicoFacultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, MexicoFacultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, MexicoIndustrial Technologies Division, Universidad Politécnica de Querétaro, Carretera Estatal 420, El Marques 76240, MexicoDepartment of Mechatronics and Automation, University of Szeged, 6724 Szeged, HungaryBrushed (B) and Brushless (BL) DC motors constitute the cornerstone of mechatronic systems regardless their sizes (including miniaturized), in which both position and speed control tasks require the application of sophisticated algorithms. This manuscript addresses the initial step using time series analysis to forecast Back EMF values, thereby enabling the elaboration of real-time adaptive fine-tuning strategies for PID controllers in such a control system design problem. An Auto-Regressive Moving Average (ARMA) model is developed to estimate the DC motor parameter, which evolves in time due to the system’s imperfection (i.e., unpredictable duty cycle) and influences the closed-loop performance. The methodology is executed offline; thus, it highlights the applicability of collected BDC motor measurements in time series analysis. The proposed method updates the PID controller gains based on the Simulink ™ controller tuning toolbox. The contribution of this approach is shown in a comparative study that indicates an opportunity to use time series analysis to forecast DC motor parameters, to re-tune PID controller gains, and to obtain similar performance under the same perturbation conditions. The research demonstrates the practical applicability of the proposed method for fine-tuning/re-tuning controllers in real-time. The results show the inclusion of the time series analysis to recalculate controller gains as an alternative for adaptive control.https://www.mdpi.com/2072-666X/13/8/1264adaptive controlBrushed DC motorProportional-Integral-Derivative controltime seriesAuto-Regressive Moving Average model
spellingShingle José A. Niembro-Ceceña
Roberto A. Gómez-Loenzo
Juvenal Rodríguez-Reséndiz
Omar Rodríguez-Abreo
Ákos Odry
Auto-Regression Model-Based Off-Line PID Controller Tuning: An Adaptive Strategy for DC Motor Control
Micromachines
adaptive control
Brushed DC motor
Proportional-Integral-Derivative control
time series
Auto-Regressive Moving Average model
title Auto-Regression Model-Based Off-Line PID Controller Tuning: An Adaptive Strategy for DC Motor Control
title_full Auto-Regression Model-Based Off-Line PID Controller Tuning: An Adaptive Strategy for DC Motor Control
title_fullStr Auto-Regression Model-Based Off-Line PID Controller Tuning: An Adaptive Strategy for DC Motor Control
title_full_unstemmed Auto-Regression Model-Based Off-Line PID Controller Tuning: An Adaptive Strategy for DC Motor Control
title_short Auto-Regression Model-Based Off-Line PID Controller Tuning: An Adaptive Strategy for DC Motor Control
title_sort auto regression model based off line pid controller tuning an adaptive strategy for dc motor control
topic adaptive control
Brushed DC motor
Proportional-Integral-Derivative control
time series
Auto-Regressive Moving Average model
url https://www.mdpi.com/2072-666X/13/8/1264
work_keys_str_mv AT joseaniembrocecena autoregressionmodelbasedofflinepidcontrollertuninganadaptivestrategyfordcmotorcontrol
AT robertoagomezloenzo autoregressionmodelbasedofflinepidcontrollertuninganadaptivestrategyfordcmotorcontrol
AT juvenalrodriguezresendiz autoregressionmodelbasedofflinepidcontrollertuninganadaptivestrategyfordcmotorcontrol
AT omarrodriguezabreo autoregressionmodelbasedofflinepidcontrollertuninganadaptivestrategyfordcmotorcontrol
AT akosodry autoregressionmodelbasedofflinepidcontrollertuninganadaptivestrategyfordcmotorcontrol