SELF-SUPERVISED ADVERSARIAL SHAPE COMPLETION
The goal of this paper is 3D shape completion: given an incomplete instance of a known category, hallucinate a complete version of it that is geometrically plausible. We develop an adversarial framework that makes it possible to learn shape completion in a self-supervised fashion, only from incomple...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-05-01
|
Series: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-2-2022/143/2022/isprs-annals-V-2-2022-143-2022.pdf |