Learning self-supervised molecular representations for drug–drug interaction prediction
Abstract Drug–drug interactions (DDI) are a critical concern in healthcare due to their potential to cause adverse effects and compromise patient safety. Supervised machine learning models for DDI prediction need to be optimized to learn abstract, transferable features, and generalize to larger chem...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2024-01-01
|
Series: | BMC Bioinformatics |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12859-024-05643-7 |