Improving the Reliability of ML‐Corrected Climate Models With Novelty Detection

Abstract Using machine learning (ML) for the online correction of coarse‐resolution atmospheric models has proven effective in reducing biases in near‐surface temperature and precipitation rate. However, ML corrections often introduce new biases in the upper atmosphere and causes inconsistent model...

Descrizione completa

Dettagli Bibliografici
Autori principali: Clayton Sanford, Anna Kwa, Oliver Watt‐Meyer, Spencer K. Clark, Noah Brenowitz, Jeremy McGibbon, Christopher Bretherton
Natura: Articolo
Lingua:English
Pubblicazione: American Geophysical Union (AGU) 2023-11-01
Serie:Journal of Advances in Modeling Earth Systems
Soggetti:
Accesso online:https://doi.org/10.1029/2023MS003809