A dichotomy of sets via typical differentiability

We obtain a criterion for an analytic subset of a Euclidean space to contain points of differentiability of a typical Lipschitz function: namely, that it cannot be covered by countably many sets, each of which is closed and purely unrectifiable (has a zero-length intersection with every $C^1$...

Full description

Bibliographic Details
Main Authors: Michael Dymond, Olga Maleva
Format: Article
Language:English
Published: Cambridge University Press 2020-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509420000456/type/journal_article