On the structure of finite groups associated to regular non-centralizer graphs
The non-centralizer graph of a finite group $ G $ is the simple graph $ \Upsilon_G $ whose vertices are the elements of $ G $ with two vertices are adjacent if their centralizers are distinct. The induced non-centralizer graph of $ G $ is the induced subgraph of $ \Upsilon_G $ on $ G\setminus Z(G) $...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2023-11-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/math.20231585?viewType=HTML |