Predicting saturated and near-saturated hydraulic conductivity using artificial neural networks and multiple linear regression in calcareous soils.
Hydraulic conductivity (Kψ) is one of the most important soil properties that influences water and chemical movement within the soil and is a vital factor in various management practices, like drainage, irrigation, erosion control, and flood protection. Therefore, it is an essential component in soi...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2024-01-01
|
Series: | PLoS ONE |
Online Access: | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0296933&type=printable |