Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Advanced
  • Editorial: Understanding and b...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
Editorial: Understanding and bridging the gap between neuromorphic computing and machine learning, volume II

Editorial: Understanding and bridging the gap between neuromorphic computing and machine learning, volume II

Bibliographic Details
Main Authors: Lei Deng, Huajin Tang, Kaushik Roy
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-10-01
Series:Frontiers in Computational Neuroscience
Subjects:
spiking neural networks
neuromorphic computing
neuromorphic hardware
artificial neural networks
machine learning
Online Access:https://www.frontiersin.org/articles/10.3389/fncom.2024.1455530/full
  • Holdings
  • Description
  • Similar Items
  • Staff View

Internet

https://www.frontiersin.org/articles/10.3389/fncom.2024.1455530/full

Similar Items

  • Editorial: Understanding and Bridging the Gap Between Neuromorphic Computing and Machine Learning
    by: Lei Deng, et al.
    Published: (2021-03-01)
  • Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware
    by: Andreas Stöckel, et al.
    Published: (2017-08-01)
  • Editorial: From theory to practice: the latest developments in neuromorphic computing applications
    by: Arash Ahmadi, et al.
    Published: (2024-10-01)
  • Retraction: Benchmarking neuromorphic systems with Nengo
    by: Frontiers in Neuroscience Editorial Office
    Published: (2015-11-01)
  • Brain-inspired methods for achieving robust computation in heterogeneous mixed-signal neuromorphic processing systems
    by: Dmitrii Zendrikov, et al.
    Published: (2023-01-01)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs