Optimizing Multi-Objective Federated Learning on Non-IID Data with Improved NSGA-III and Hierarchical Clustering
Federated learning (FL) can tackle the problem of data silos of asymmetric information and privacy leakage; however, it still has shortcomings, such as data heterogeneity, high communication cost and uneven distribution of performance. To overcome these issues and achieve parameter optimization of F...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-05-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/14/5/1070 |