Transitioning from Simulation to Reality: Applying Chatter Detection Models to Real-World Machining Data

Chatter, a self-excited vibration phenomenon, is a critical challenge in high-speed machining operations, affecting tool life, product surface quality, and overall process efficiency. While machine learning models trained on simulated data have shown promise in detecting chatter, their real-world ap...

Ausführliche Beschreibung

Bibliographische Detailangaben
Hauptverfasser: Matthew Alberts, Sam St. John, Simon Odie, Anahita Khojandi, Bradley Jared, Tony Schmitz, Jaydeep Karandikar, Jamie B. Coble
Format: Artikel
Sprache:English
Veröffentlicht: MDPI AG 2024-12-01
Schriftenreihe:Machines
Schlagworte:
Online Zugang:https://www.mdpi.com/2075-1702/12/12/923