A MEMS-based Benzene Gas Sensor with a Self-heating WO3 Sensing Layer

In the study, a MEMS-based benzene gas sensor is presented, consisting of a quartz substrate, a thin-film WO3 sensing layer, an integrated Pt micro-heater, and Pt interdigitated electrodes (IDEs). When benzene is present in the atmosphere, oxidation occurs on the heated WO3 sensing layer. This cause...

Full description

Bibliographic Details
Main Authors: Lung-Ming Fu, Chia-Yen Lee, Mu-Tsun Lee, Ming-Tsun Ke
Format: Article
Language:English
Published: MDPI AG 2009-04-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/9/4/2895/
Description
Summary:In the study, a MEMS-based benzene gas sensor is presented, consisting of a quartz substrate, a thin-film WO3 sensing layer, an integrated Pt micro-heater, and Pt interdigitated electrodes (IDEs). When benzene is present in the atmosphere, oxidation occurs on the heated WO3 sensing layer. This causes a change in the electrical conductivity of the WO3 film, and hence changes the resistance between the IDEs. The benzene concentration is then computed from the change in the measured resistance. A specific orientation of the WO3 layer is obtained by optimizing the sputtering process parameters. It is found that the sensitivity of the gas sensor is optimized at a working temperature of 300 °C. At the optimal working temperature, the experimental results show that the sensor has a high degree of sensitivity (1.0 KΩ ppm-1), a low detection limit (0.2 ppm) and a rapid response time (35 s).
ISSN:1424-8220