A Novel Wireless Network Intrusion Detection Method Based on Adaptive Synthetic Sampling and an Improved Convolutional Neural Network
The diversity of network attacks poses severe challenges to intrusion detection systems (IDSs). Traditional attack recognition methods usually adopt mining data associations to identify anomalies, which has the disadvantages of a high false alarm rate (FAR), low recognition accuracy (ACC) and poor g...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9239970/ |