Adversarially Trained Object Detector for Unsupervised Domain Adaptation
Unsupervised domain adaptation, which involves transferring knowledge from a label-rich source domain to an unlabeled target domain, can be used to reduce annotation costs in the field of object detection substantially. This study demonstrates that adversarial training in the source domain can be em...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2022-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9789122/ |