Inter-subject pattern analysis: A straightforward and powerful scheme for group-level MVPA

Multivariate pattern analysis (MVPA) has become vastly popular for analyzing functional neuroimaging data. At the group level, two main strategies are used in the literature. The standard one is hierarchical, combining the outcomes of within-subject decoding results in a second-level analysis. The a...

詳細記述

書誌詳細
主要な著者: Qi Wang, Bastien Cagna, Thierry Chaminade, Sylvain Takerkart
フォーマット: 論文
言語:English
出版事項: Elsevier 2020-01-01
シリーズ:NeuroImage
主題:
オンライン・アクセス:http://www.sciencedirect.com/science/article/pii/S1053811919307967