Adaptive CoCoLasso for High-Dimensional Measurement Error Models

A significant portion of theoretical and empirical studies in high-dimensional regression have primarily concentrated on clean datasets. However, in numerous practical scenarios, data are often corrupted by missing values and measurement errors, which cannot be ignored. Despite the substantial progr...

Descripción completa

Detalles Bibliográficos
Autor principal: Qin Yu
Formato: Artículo
Lenguaje:English
Publicado: MDPI AG 2025-01-01
Colección:Entropy
Materias:
Acceso en línea:https://www.mdpi.com/1099-4300/27/2/97